Cosmic Fireworks in the Clouds: Volunteer Detectives Sought for Magellanic Clouds Cluster Search

(28 March 2019)

A portrait of the night sky taken from Cerro Tololo Inter-American Observatory in Chile showing the Large and Small Magellanic Clouds (upper and center left, respectively) with the Blanco 4-m telescope (lower right). The Blanco hosts the Dark Energy Camera (DECam), which was used to obtain the SMASH survey images of the Magellanic Clouds used by the Local Group Cluster Search. Inset images zoom in on three star-forming regions in the Large Magellanic Cloud as seen in SMASH survey images, showing strong emission from hot gas that surrounds newborn young massive stars.
(Credit: Anja von der Linden / Stony Brook University; Inset: SMASH survey)

Caught in a cosmic dance, our nearest neighbor galaxies, the Magellanic Clouds, are cartwheeling and circling each other as they fall toward our galaxy, the Milky Way. The gravitational interaction between the Clouds sparks cosmic fireworks—bursts of star formation as new clusters of stars flame on. How many and what kind of star clusters have been born this way over the history of the Clouds? A new project, the Local Group Cluster Search, invites citizen scientists to help find out!

Close enough to see with the naked eye when viewed from the southern hemisphere, the Magellanic Clouds have interacted in multiple close encounters over the past 2 billion years. During the encounters, gravitational forces push and pull on gas in the Clouds, sparking the formation of many new star clusters—“families” of hundreds to millions of stars—each formed from a single cloud of gas and dust.

These clusters are useful to astronomers because they can be age-dated with great precision and used to reconstruct a historical record of star formation. By counting the number of clusters as a function of age, astronomers can back out the birthrate of clusters and chart the interaction history of the Clouds.

See more on: RELEASE NO: NOAO 19-05

Vea Versión en Español

 

The Cerro Tololo Inter-American Observatory (CTIO) is a complex of astronomical telescopes and instruments located at 30.169 S, 70.804 W, approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.  CTIO headquarters are located in La Serena, Chile, about 300 miles north of Santiago.

The CTIO complex is part of the U.S. National Optical Astronomy Observatory (NOAO), along with the Kitt Peak National Observatory (KPNO) in Tucson, Arizona.  NOAO is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation (NSF).  CTIO, as part of the AURA Observatory in Chile, operates in Chile under Chilean law, through an Agreement with the University of Chile and with the auspices of the Ministry of Foreign Affairs of Chile.

The principal telescopes on site are the 4-m Victor M. Blanco Telescope and the 4.1-m Southern Astrophysical Research (SOAR) telescope.  One of the two 8-m telescopes comprising the Gemini Observatory is co-located with CTIO on AURA property in Chile, together with more than 10 other telescopes and astronomical projects.