Distant galaxies 'lift the veil' on the end of the cosmic dark ages

(12 July 2017)

Milestones in the history of the Universe (not to scale). The intergalactic gas was in a neutral state from about 300,000 years after the Big Bang until light from the first generation of stars and galaxies began to ionize it. The gas was completely ionized after 1 billion years. The LAGER study takes a close look at the state of the Universe at 800 million years (yellow box) to investigate when and how this transformation occurred. Credit: NAOJ.
 

Astronomers studying the distant Universe have found that small star-forming galaxies were abundant when the Universe was only 800 million years old, a few percent of its present age. The results suggest that the earliest galaxies, which illuminated and ionized the Universe, formed at even earlier times.

Long ago, about 300,000 years after the beginning of the Universe (the Big Bang), the Universe was dark. There were as yet no stars and galaxies, and the Universe was filled with neutral hydrogen gas. At some point the first galaxies appeared, and their energetic radiation ionized their surroundings, the intergalactic gas, illuminating and transforming the Universe.

While this dramatic transformation is known to have occurred sometime in the interval between 300 million years and 1 billion years after the Big Bang, determining when the first galaxies formed is a challenge. The intergalactic gas, which is initially neutral, strongly absorbs and scatters the ultraviolet light emitted by the galaxies, making them difficult to detect.

To home in on when the transformation occurred, astronomers take an indirect approach. Using the demographics of small star-forming galaxies to determine when the intergalactic gas became ionized, they can infer when the ionizing sources, the first galaxies, formed. If star forming galaxies, which glow in the light of the hydrogen Lyman alpha line, are surrounded by neutral hydrogen gas, the Lyman alpha photons are readily scattered, much like headlights in fog, obscuring the galaxies. When the gas is ionized, the fog lifts, and the galaxies are easier to detect.

Read more at: NOAO Press Release 17.03

Daniel Maturana Retires
Posted: 22 November 2016
Cerro Tololo Trails
Posted: 24 October 2016
2016 Astro Jamboree
Posted: 13 October 2016

 

The Cerro Tololo Inter-American Observatory (CTIO) is a complex of astronomical telescopes and instruments located at 30.169 S, 70.804 W, approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.  CTIO headquarters are located in La Serena, Chile, about 300 miles north of Santiago.

The CTIO complex is part of the U.S. National Optical Astronomy Observatory (NOAO), along with the Kitt Peak National Observatory (KPNO) in Tucson, Arizona.  NOAO is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation (NSF).  CTIO, as part of the AURA Observatory in Chile, operates in Chile under Chilean law, through an Agreement with the University of Chile and with the auspices of the Ministry of Foreign Affairs of Chile.

The principal telescopes on site are the 4-m Victor M. Blanco Telescope and the 4.1-m Southern Astrophysical Research (SOAR) telescope.  One of the two 8-m telescopes comprising the Gemini Observatory is co-located with CTIO on AURA property in Chile, together with more than 10 other telescopes and astronomical projects.