KOSMOS Review
The Detector System

August 2 & 3, 2010
- Architecture overview
- Detector characteristics
- Torrent controller status
- Costs and schedules
- Plan for integration prior to delivery
Architecture overview

- Ethernet switch
- Pixel Acquisition Node (PAN)
 - Linux PC with Systran
- Fiber Optic pair
- TORRENT DHE
 - E2V CCD 44-82 2kx4k
- OR
 - LBNL DD CCD 4kx2k
- Linux Supervisory PC
E2V Detector characteristics

- **E2V CCD44-82**
 - Better Blue response: >50% at 350nm
 - Already in use at NOAO
 - MOSAIC1.1 upgrade
 - Using as a test for Torrent

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>2048(H) x 4096(V)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>15 μm square</td>
</tr>
<tr>
<td>Image area</td>
<td>30.7 mm x 61.4 mm</td>
</tr>
<tr>
<td>Outputs</td>
<td>2</td>
</tr>
<tr>
<td>Package size</td>
<td>31.7 mm x 66.6 mm</td>
</tr>
<tr>
<td>Package format</td>
<td>Invar metal package with PGA connector</td>
</tr>
<tr>
<td>Focal plane height, above base</td>
<td>14.0 mm</td>
</tr>
<tr>
<td>Connectors</td>
<td>PGA</td>
</tr>
<tr>
<td>Flatness</td>
<td>20 μm p-v</td>
</tr>
<tr>
<td>Amplifier responsivity</td>
<td>6.0 μV/e⁻</td>
</tr>
<tr>
<td>Readout noise</td>
<td>2.5 e⁻ at 20kHz</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Image pixel charge storage</td>
<td>200,000 e⁻</td>
</tr>
<tr>
<td>Dark signal</td>
<td>0.01 e⁻/pixel/hour (at 153K)</td>
</tr>
</tbody>
</table>

From E2V Data Sheet
LBNL Detector characteristics

- 4k x 2k
- 4k along columns for nod & shuffle
- 15 μm pixels
- 4 side buttable package
- Deep depletion
 - Better Red response: >60% at 1 μm
 - Requires backside bias
- P channel
 - Torrent is able to run with current design
- Ribbon cable exits on rear to connector
- Will require time to integrate & test
 - Also for use in Hydra – S upgrade
Overview of Torrent

We are presenting a CCD version of the controller, which has:

- 8 channels of video inputs
- 32 clocks
- 16 low voltage biases
- 16 high voltage biases
- Back side bias supply
- Supports either N or P type devices
 - Same controller through configuration files
- Uses the MONSOON software and PAN hardware without modification
What is Torrent?

- Like MONSOON, Torrent is not an acronym
- It is a smaller more purposed MONSOON
- It is aimed towards:
 - Replacing aging controllers at Kitt Peak & CTIO
 - Use on new instruments that don’t need the capabilities of its big brother
 - Helping with commonality of controllers
 - Replace varying controller architectures at both sites
What is Torrent?

- A **Green** Controller
 - ROHS construction (Lead free solder)
 - Low power consumption
- Mounts to the ‘Universal’ (N & S) Dewars
 - Different number of connectors N & S
 - Dewar size similar
- Has a small external power supply
 - 24VDC 60W
- Recirculating airflow for cooling
How big is it?

 Much smaller than Big Brother ‘Orange’ MONSOON!

Photo credit: D. Sprayberry
OK – really, how big?

SAE: 7 5/8” W x 5 5/8” H x 13 1/4” D, 11.8 lbs
Metric: 195mm W x 150mm H x 335mm D, 5.36kg
(Or 19.5cm W x 15cm H x 33.5cm D, 5.36kg)
Torrent Hardware - Names

Data Head Electronics - DHE

Transition Module (TSM)

Controller
Torrent Hardware Parts

Local Control Board (LCB) Mezzanine board (MEZ)
(behind LCB)

Blower

Power Supply Module (PSM)

Analog Front End (AFE)
Other interesting facts

- Power dissipation targeted at <30W
- Integrated closed loop Dewar heater controller
 - Uses either diode or RTD feedback
- Integrated optically isolated shutter output
 - Has two feedback inputs for open/closed feedback
 - Has one other output (preflash?)
- Integrated switching power supply
 - Requires only a small external 24VDC power supply
- Boards are fabricated at outside vendors
 - Allows use of automated assembly for improved yield
 - Allows use of BGA technology and soldered back contacts
Summary of present progress

- Systems are operational in Tucson and La Serena labs
- Analog Front End (AFE) board is at rev. 1
- Mezzanine board is at rev. 1
- PSM is going to rev. 1 (to include V_{BB})
- All other boards at proto level
- Auto-configuration software is in test
- Testing, calibration and EEPROM writing in progress
- Ready to be mounted to an E2V chip in a test dewar in Tucson this week.
Mechanical Design Summary

- Two complete prototype systems in the lab
 - One in Tucson, one in La Serena
 - Weight is 11.8 lbs or 5.35 kg

- Mechanical design complete
 - Initial prototype design taken to a complete manufacturing drawing set
 - Includes drawings and assembly details
 - Decision to be made for in house or outside manufacture
 - Inside shop may be overloaded (making KOSMOS?)
 - Cost of outside manufacture unknown at this time – no exotic construction or materials
 (mechanical package just put out to bid 7/29/10)
Overview of components

Boards and components we will cover:

- Local Control Board (LCB)
- Mezzanine board (MEZ)
- Analog Front End board (AFE)
- Flex Cables (no acronym)
- Transition Module (TSM)
- Power Supply Module (PSM)
Local Control Board (LCB)

- Xilinx® Virtex® 5 FPGA - brains of the system
- Controls all parts of the controller
 - No other FPGAs or CPLDs in Torrent
- Multiple communications options
 - Fiber optic, GigE & debug RS232
- Includes code for simulating Systran FO board
 - Acquired from Durham in exchange for updating to Virtex5
- Sync in/out for Master/Slave operation
- EEPROM to hold system data
- Temperature sensors at two locations
Local Control Board (LCB)

- FPGA code is written using VHDL & Xilinx tools
- Programmed through JTAG programming port
 - Can program FPGA or burn into EEPROM for boot
- Sequencer resides on FPGA
 - Copy of the original ‘Orange’ code
- TSM Present switch to signal abnormal removal of controller with power on
 - Emergency open of output switches and power down
- Watchdog timer in hardware
 - Opens output switches if FPGA stops updating
- 256 Mbytes Buffer memory
Local Control Board (LCB)

Connections to AFE1 and AFE2

Connection to PSM
Mezzanine Board (MEZ)

- Controls the power to the two AFE boards
 - Holds power switching circuitry
 - Allows sequencing of different sections
 - Current measurement
 - Shutdown on overcurrent
 - Monitors for fault
 - On mezzanine board due to space constraints
 - (as well as our confidence that it would work first time)
MEZ

(Sorry about the focus!)
CCD Analog Front End (AFE)

- 4 channels of CCD input
 - DC restored, dual slope Correlated Double Sampling (CDS) Video
- 8 channels of Low Voltage Biases: ±17V
- 16 channels of clocks: ±17V
- 8 channels of High Voltage Biases: 0 to 30V or -30V to 0
- On board regulators and references
CCD AFE

- EEPROM to hold calibration data
- Temperature sensors at two locations
- Optimized for 100 kpix/sec – 350 kpix/sec
- Programmable test points for system debug
 - Allows viewing of clocks or biases on board edge connectors during code development
Block Diagram of AFE

- **Sections of the AFE**
 - Shows the relative location of sections
 - Important for noise control
 - Clocks as far away from Video as possible
 - Allows ground current control

- **Lower chance for ground loops with single board for all connections to CCD**

Diagram Details

- **Data to & from LCB**
- **Power from MEZ**

Sections

- **Temp 1**
 - 16 Clocks
 - +17V low
 - -17V high
 - 12 bits resolution

- **Temp 2**
 - 8 Low Voltage Biases
 - -15V to +15V
 - 12 bits resolution

- **Video Out 1**
 - 8 High Voltage Biases
 - Either 0V -> 28V
 - Or
 - -28V -> 0V
 - 12 bits resolution

- **EEPROM**
 - Temp 1
 - 4 channels of DC Restored, Correlated Double Sampled Analog Inputs
 - 18 bits resolution
CCD AFE

- Designs for Torrent very similar to Orange
 - Clocks, Video processing & Bias blocks identical

- Changes:
 - Higher density/Finer resolution DACS
 - 16 buffered DACs in a single package vs. 8
 - 12 bit DACs vs. 8 bit
 - Different switches for clocks and video
 - Clock switches are smaller and lower R_{on}
 - Video switches no longer needs logic supply
 - First video amplifier placed closer to Dewar connectors in TSM
CCD AFE Testing

- All clocks tested over full range and loads
 - Unloaded rise time of $<150\,\text{ns}$
- All LV Biases tested for drive, range and noise
- All HV Biases tested for drive, range, noise for both polarities
- Video channels have five different tests for noise to check each section
Two boards supplied in each chassis for the total channel count: (8 vid/16 LVB/16 HVB/32 Clk)
CCD AFE misc

- CCD type done first as opposed to IR
 - More requirements for CCD vs. IR
- We have a reference design for the IR version with 16 channels for each board for a 32 input IR Torrent
- We also have an oversampler design for extremely low noise (<1e-7) using statistical oversampling
 - Developed through the Clinic Program with Harvey Mudd Engineering students (www.hmc.edu)
Flex circuits

- We are using flex cables to connect the AFE sections to the TSM
 - One cable carries the Clocks and Biases
 - One cable carries the video inputs
 - Each cable supports two AFE cards
- Selected to help control crosstalk and impedance
 - Controlled by layout of flex cable
 - Assists with airflow
Flex cables installed

- Shows the Clocks & Biases flex and Video flex
Connecting Controller to TSM

- Selected D series connectors from Positronics
 - Two High density connectors for AFE signals
 - Standard D25 for Utility Board
 - Connectors have guide pins for alignment
 - One side floats
 - Other side is fixed

- TSM Present switch in controller to detect:
 - If there is a TSM
 - Removal of controller with power on

- Shorting switch in TSM to short CCD Sub to shield when controller removed
 - Time between removal of controller & insertion of shorting plug
TSM and Controller Connectors

Video – Top
Clock & Bias - Bottom

Utility Connector
Transition Module

- Resides on the Dewar
- Interface to the Dewar
- Preamp to buffer the CCD
- Shutter & preflash outputs
- Dewar CCD temperature control
- EEPROM to hold system configuration
- Temperature sensors, as usual
Dewar Connectors
TSM Preamp

- Same as first stage of Orange design
 - Load resistor for CCD
 - Capacitor for DC removal
 - Initial conditioning of CCD signal
 - 1st stage gain
 - Low pass in feedback

- Is the connection area for the Video, Biases and Clocks to Dewar interface

- Allows filtering for Clocks and Biases
 - Simple RC network for customization
TSM Utility

- Added to handle functions missing on Orange as well as new functions
- EEPROM and two Temperature sensors
 - EEPROM holds configuration data for system
- Opto Isolated Shutter and Preflash outputs
- Two Opto Isolated status inputs
- CCD Thermal control
 - Calibrate for Diode or RTD sensors
 - Heater output up to 8W, jumper selectable
TSM Utility Board

Shutter out
Aux out
Shutter open
Shutter closed
Heater out
Diode 1 in
Diode 2 in
Temp1
Temp2
EEPROM
TC1 out
TC2 out

To/From PSM
Connectors on the TSM:

External:
- Shutter out*
- Aux out (preflash)*
- Status 1 in (shutter open)*
- Status 2 in (shutter closed)*
 - All on a bulkhead mount Lemo 8 pin circular connector
- TC1 (monitor on CCD) and TC2 (monitor on tank)
 - Bulkhead TC Connectors

*Note: These are optically isolated:
- Resistor to power & common needed for OC output
- Series resistor & common to drive the LED for input

Internal:
- Heater out**
- Temp 1 in
- Temp 2 in

Power level programmed by the heater power selection jumper on Utility board

- Connected back to the LCB through PSM
 - EEPROM
 - Temp1
 - Temp2
Power Supply Module (PSM)

- External power is 24VDC
 - Inline notebook type medical grade power supply
 - Could use an enclosed type mounted in instrument enclosure
- PSM board resides with controller
 - Has fixed 3.3V logic supplies
 - Has adjustable supplies for ±15 to ±20V and ±5 to ±8V
 - Has -5/+30V or -30/+5V for HV Biases
 - N or P type devices
 - Has a Backside Bias of up to 70V
 - Polarity is opposite of HV power
 - Mounts in a machined aluminum box (uses conductive cooling)
 - Separate box due to EMI considerations
 - EEPROM to hold calibration data
 - Temperature sensors at two locations
Power Supply Module (PSM)

- Power In
- Fuse for Heater
- Opto isolators
Cost & schedule

- Torrent manufacturing review August 20
- After review items taken care of:
 - Nominal start of Sept 1
 - Start manufacture process for all boards needed
 - Includes getting rest parts needed
 - Start mechanical fabrication
 - We will be making multiple copies (15 – 20)
 - Determine final system cost
 - Should be under $15k including PAN & Systran
 - Board testing fixturing design & build starts
 - Testing of all boards and sub-assemblies
Plan for integration prior to delivery

- First mechanical assemblies due Nov ’10
- All boards should be ordered or in house by Dec ’10
 - Need inspection before power up! Takes 1 – 2 days per board
- Dewar modifications can start before CCD is ordered
- Assembly and test of first production Torrents should start Jan ’11
- Integration of dewar, CCD & Torrent starts in Feb ’11
- Testing complete by late Feb ’11,
- Ready to take a plane flight to Ohio in March ’11
 - Includes Dewar with CCD, Torrent, PAN computer with Systran and fibers for link
 - Software already available on the MONSOON website
The Torrent Team

- The main people:
 - Mark Hunten, Project Manager
 - Nick Buchholz, Senior Software Engineer
 - Phil Daly, Senior Software Engineer
 - Ron George, Engineer
 - Peter Moore, Senior Engineer
 - Roy Olson, Technical Writer
 - Dave Sawyer, Senior Engineer, MOSAIC1.1 Proj. Mgr.
 - Dee Stover, Designer & PCB Layout wizard

- People who have put in many hours:
 - Joe DeVries, mechanical engineer
 - The Technicians:
 - Kathy Zelaya, Jack Carlson, Ken Don